
RoboShop Project
Delivrable 1

PHAROS: Concepts and Architecture

Noury Bouraqadi, Luc Fabresse, Jannik Laval, and Santiago Bragagnolo

firstname.lastname@mines-douai.fr
http://car.mines-douai.fr

Technical Report 20130415

Dépt. Informatique et Automatique (DIA)
Ecole des Mines de Douai

941 rue Charles Bourseul - C.S. 10838
59508 Douai Cedex

France

http://car.mines-douai.fr

This work was done as part of the RoboShop project (2012-2013). It was supported by:

1

Contents

1 Introduction: Robots in Shopping Malls 3
1.1 Mobile Autonomous Robots . 3
1.2 Robots for Retail . 3
1.3 This Report . 4

2 ROS 5
2.1 ROS node . 5
2.2 ROS master . 5
2.3 ROS Messages . 6
2.4 Topics and Asynchronous Communications 6
2.5 Services and Synchronous Communications 6

3 PHAROS 7
3.1 PHAROS Setup . 7

3.1.1 Building PHAROS . 7
3.1.2 Installing PHAROS on a ROS-ready Computer 8
3.1.3 Launching PHAROS . 8

3.2 General Architecture . 10
3.3 PHAROS in action . 12

3.3.1 Preparing ROS . 12
3.3.2 Topic Publisher Node . 12
3.3.3 Topic Subscriber Node . 14

3.4 PHAROS Prototyping and Debugging Facilities 15
3.4.1 Calling a service . 15
3.4.2 Writing a Publisher Node with PhaROSBlockNode 16
3.4.3 Writing a Subscriber Node with PhaROSBlockNode 17
3.4.4 Writing a Node that is both a Publisher and a Subscriber 18

3.5 Running PHAROS Tests . 19
3.5.1 ROS Environment Variables Set Up 19
3.5.2 Testing ROS . 19

2

Chapter 1

Introduction: Robots in Shopping
Malls

1.1 Mobile Autonomous Robots
The ROBOSHOP project aims at experimenting the use mobile autonomous
robots [Par08] in the context of application related to retail. The mobile adjective de-
notes that our robots will act in an open partially known environment which is contin-
uously changing. It is virtually impossible to predict all situations which will confront
robots, and even less their sequences because of the combinatory explosion.

Robots that we will use in the ROBOSHOP must also be autonomous. Their behavior
will be solely driven by the onboard embedded software. A such robot makes decisions
on its own without any intervention of a human operator. It should achieve its mission
in a way that ensures safety of humans that it might meet, and without damaging neither
itself, nor other objects in its environment.

1.2 Robots for Retail
Building robots that are both mobile and autonomous is among the current challenges
faced by roboticists. Nevertheless, the current state of the art allows building robotic
products for the mass market as exemplified by the robotic vacuum cleaner. Other ap-
plications for mobile autonomous robotics exist and some are even turned into actual
products such as lawn mowers or swimming pool cleaners.

In the ROBOSHOP project, we aim at showing that robots can be useful in shopping
malls. They can attract people by providing them a new breed of services. To illustrate
this idea, we will ultimately implement an example of such a service: a robot guide. The
robot should be able to guide people within the mall, and provide them with information
about available shops and products.

3

1.3 This Report
This report is the first delivery of the ROBOSHOP project. We describe in chapter 3
(page 7) the software architecture of PHAROS, the ROS client that we have imple-
mented on top of the Pharo programming language. Indeed, we have chosen to comply
with ROS (Robot Operating System) which is the de facto standard middleware in the
robotic community. All the background notions related to ROS required to understand
PHAROS are introduced in chapter 2 (page 5).

4

Chapter 2

ROS

ROS (http://ros.org) is a middleware dedicated to robotics. It enables the interaction be-
tween different software possibly written by different developers and running in differ-
ent processes.

2.1 ROS node
A ROS system is a set of communicating system processes. Each software running
in a system process is called a node. Nodes are almost never standalone. They can
communicate with each other either synchronously (RPC) or asynchronously (publish
and subscribe).

2.2 ROS master
A ROS based system relies on a special node called master. The ROS master is the
entry point for all other nodes, since it allows them discover each other. Because ROS
master is playing a so central role, it must be launched before all other nodes. This is
done by executing the roscore command line.

The ROS master acts as a naming registry. It stores topics and services registra-
tion information for ROS nodes. Nodes communicate with the master to report their
registration information. As these nodes communicate with the master, they can re-
ceive information about other registered nodes and make connections as appropriate.
The master will also make callbacks to these nodes when this registration information
changes, which allows nodes to dynamically create connections as new nodes are run.

Nevertheless, nodes "talk" to each other directly. Indeed, the master only provides
lookup information, much like a DNS server.

5

http://ros.org

2.3 ROS Messages
Nodes communicate with each other by passing messages. A message is simply a data
structure, comprising typed fields. Standard primitive types (integer, floating point,
boolean, etc.) are supported, as are arrays of primitive types. Messages can include
arbitrarily nested structures and arrays (much like C structs)

2.4 Topics and Asynchronous Communications
Asynchronous communications in ROS follow the publish-subscribe model. A node
sends out a message by publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multiple concurrent publishers
and subscribers for a single topic, and a single node may publish and/or subscribe to
multiple topics. In general, publishers and subscribers are not aware of each others’
existence. The idea is to decouple the production of information from its consumption.
Logically, one can think of a topic as a strongly typed message bus. Each bus has a
name, and anyone can connect to the bus to send or receive messages as long as they are
the right type.

2.5 Services and Synchronous Communications
Nodes can communicate synchronously à la RPC via services. Each service is defined
by a pair of messages: one for the request and one for the reply. A providing node offers
a service under a name and a client uses the service by sending the request message and
awaiting the reply.

6

Chapter 3

PHAROS

PHAROS is a ROS client developed in the Pharo programming language [NDP10].
Being a client means that it allows building new ROS nodes that communicate with the
ROS master as well as with other nodes.

3.1 PHAROS Setup

3.1.1 Building PHAROS
PHAROS relies on several other open source projects programmed in Pharo. The main
ones are:

• XMLRPC which provides support for doing Remote Procdedure Call through
XML

• OSProcess which provides support to run system commands (such asrosrun)
from Pharo

To install PHAROS, you should:

1. Download Pharo 1.4 (the virtual machine, the image and the source file) at http:

//www.pharo-project.org/pharo-download/release-1-4

2. Load the PHAROS code and its dependencies using:

1 Gofer it
2 url: ’http://car.mines-douai.fr/squeaksource/PhaROS’;

package: ’ConfigurationOfPhaROS’;
4 load.

((Smalltalk at: #ConfigurationOfPhaROS) project version: #pharosRoboshop1)
load.

7

http://www.pharo-project.org/pharo-download/release-1-4
http://www.pharo-project.org/pharo-download/release-1-4

3.1.2 Installing PHAROS on a ROS-ready Computer
At this stage, you need to copy PHAROS to a computer with ROS installed. That is
copying the corresponding Pharo files (.image, .change and other files).

Currently, PHAROS supports ROS fuerte1. To make the installation simpler, you
can download a VirtualBox2 ready to use virtual machine3. All the examples presented
in this chapter have been tested in this environment.

Warning: Even if ROS master is located on another machine, you need anyway to
install ROS on the machine where PHAROS is run. In fact, the current version of
PHAROS uses the rosmsg utility to communicate with other nodes.

3.1.3 Launching PHAROS
We can now launch PHAROS and get a window like the one of Figure 3.1, using the
following command in a terminal. We assume that we are logged in as viki user on a
machine named ROS, hence the prompt.

viki@ROS$ /home/viki/pharo−vm/pharo /home/viki/pharos.image

Warning: Do not use a double-click on the PHAROS.sh file, because ROS environ-
ment variables will not be set since the .bashrc is ignored. This is because the current
version of PHAROS needs ROS to be installed on the same machine4.

1http://www.ros.org/wiki/fuerte/Installation
2https://www.virtualbox.org
3http://nootrix.com/2012/09/virtualizing-ros/
4PHAROS uses the rosmsg utility to communicate with other nodes

8

http://www.ros.org/wiki/fuerte/Installation
https://www.virtualbox.org
http://nootrix.com/2012/09/virtualizing-ros/

Figure 3.1: Pharo environment with PHAROS code

9

3.2 General Architecture
Figure 3.2 depicts the general architecture of PHAROS. PHAROS is built around
three concepts explained in Chapter 2: ROS Node, ROS master, and ROS Topic. In
the PHAROS architecture, they are represented by the three classes: PhaROSMaster,
PhaROSNode, and PhaROSTopic. We describe each of them in the following, together with
other core classes.

PhaROSMaster. This class is the interface to the ROS master. It allows to discover
other nodes inside and outside Pharo.

PhaROSNode. Is a node developed in PhaROS and running inside the current
Pharo image. A PhaROSNode contains a publisher and/or a subscriber. A publisher
(PhaROSPublisher) allows the node to provide information to other nodes. It uses an output
channel (PhaROSOutputChannel) to publish the information. A subscriber (PhaROSSubscriber

) gives to the node the information provided by other external or internal nodes. The
subscriber is configured by giving a topic, which return the right channel to listen.

PhaROSExternalNode. The class is an interface to any ROS node, external to the
current Pharo image. It can be a node which running in another Pharo image or a
node developed in any other programming language. This interface allows to receive
information from this node or to send information. As for PhaROSNode, it uses the Input
or Output Channels to communicate with PHAROS.

PhaROSTopic. A topic represents the dispatcher of channels. When a node asks for
information or publishes information, it asks the right instance of PhaROSTopic to give it
the correct channel. The topic returns to the node a channel that it can use as output or
input.

In case of communication between two nodes inside Pharo, the communication does
not go outside Pharo. The mechanism is handled inside Pharo. This provides better
performance than if it would use the TCP protocol.

10

send: aMsg to: aTopic
interestedIn:aTopic
receive: aMsg from: aChannel

PhaROSNode

startUp
PhaROSChannel

startUp

broadcaster
process

PhaROSInputChannel
send: aMessage
PhaROSOutputChannel

subscribeIntoInputChannels
registerOutputChannel

PhaROSTopic

send: aMsg to: aTopic
PhaROSPublisher

interestedIn: aTopic
PhaROSSubscriber

receive: aMsg from: aChannel
receiveDataTimeOut: tOut into: buffer

socket
PhaROSExternalNode

registerNode: aNode
lookUpTopic: aTopic

topics
nodes

PhaROSMaster
+master
1

*

1 1

1

1

*
* 1
+channels

+topics*

1
1

*

*

A publisher
publishes on

multiple channels
that all belong to
different topics

Figure 3.2: Class diagram of PHAROS

11

3.3 PHAROS in action
In this section we provide examples showing how to use PHAROS for writing nodes.
We show step by step what to do on the PHAROS side and command lines to perform
on the ROS part.

3.3.1 Preparing ROS
In our examples, we interact with the turtle simulator of ROS. This is actually a node
that is provided as part of ROS distribution. Both the turtle simulator and our nodes (i.e.
PHAROS) will be running on the same machine.

Before running our examples, we need first to start a ROS master, and a turtle sim-
ulator node. To launch the ROS master, evaluate the following command line in a
terminal.

viki@ROS$ roscore

To start the simulator, evaluate the following command line in a terminal.

viki@ROS$ rosrun turtlesim turtlesim_node

3.3.2 Topic Publisher Node
In this example, we develop a node that publishes velocity messages consumed by the
turtle, through the ’/turtle1/command_velocity’ topic. The full code of the class of our node
PhaROSTurtleDriver is provided by the listing 3.1.

1 PhaROSNode subclass: #PhaROSTurtleDriver
2 instanceVariableNames: ’process’

classVariableNames: ’’
4 poolDictionaries: ’’

category: ’PhaROS-Experiments-RoboShopDeliverable1’
6

PhaROSTurtleDriver>>start
8 super start.

process := [self publishingLoop] newProcess.
10 process

name: ’Turtle Driver’;
12 priority: Processor userBackgroundPriority;

resume
14

PhaROSTurtleDriver>>publishingLoop
16 |delay|

delay := 1 second asDelay.

12

18 [
delay wait.

20 self
sendTo: ’/turtle1/command_velocity’

22 a: [:message |
message angular: 1.0.

24 message linear: 2.0]
] repeat

26

PhaROSTurtleDriver>>stop
28 super stop.

process terminate

Listing 3.1: A Topic Publisher Node Definition

The PhaROSTurtleDriver class is defined as a subclass of PhaROSNode. It redefines the
start method to fork a process that loops infintely. The loop is defined in method
publishingLoop. Every second, it sends a velocity command to the turtle through the ’/

turtle1/command_velocity’ topic.
Publishing into a topic is done using the sendTo:a: message. The first parameter is the

name of the topic. The second parameter is a block which argument is the ROS message
instance of PhaROSPacket. A ROS message is a data structure with named fields, similar
to a struct of the C language. In our example, messages to the ’/turtle1/command_velocity’ topic
correspond to a speed. They have two fields: angular speed and linear speed that are set
lines 23-24.

The PhaROSTurtleDriver class overrides the stop method. This is because we need to ter-
minate the process (created by start method) which loops indefinitely. This termination
is performed by sending the terminate message to the process (line 29).

To use our class and create an actual ROS node, we need to evaluate the code of
listing 3.2 in a workspace. First we create a proxy to the ROS master (line 1). We
provide an url with the address and the port of the ROS master. In our example, the
ROS master is running on the same machine as our node, so we use the loopback address
(127.0.0.1).

1 master := PhaROSMaster url: ’http://127.0.0.1:11311/’.
2 node := master

create: PhaROSTurtleDriver
4 named: ’/myTurtleDriver’

domain: ’127.0.0.1’
6 tcpPort: 20202

xmlRpcPort: 21212

Listing 3.2: Running a Topic Publisher Node

Node creation is performed by the ROS master proxy (lines 2 7). We provide it with
the node’s class (line 2), and the public unique name of the node (line 3). The third

13

argument is the name or the address of the machine hosting PHAROS. That is the local
host in our example (127.0.0.1). Each node communicates with the ROS master and
others nodes through TCP and XML RPC5. The last two arguments refer to ports for
incoming communications to our node for these two protocols.

The node is automatically started. So, the call of method start is implicit. However,
to stop any PHAROS node, we need to explicitly evaluate node stop.

Warning: In the current version of PHAROS, a stopped node cannot be restarted.
You’d rather need to create another instance of the same class.

3.3.3 Topic Subscriber Node
In this example, we develop a node that logs velocity messages from the ’/turtle1/

command_velocity’ topic. The full code of the class of our node PhaROSTurtleLogger is provided
by the listing 3.3.

1 PhaROSNode subclass: #PhaROSTurtleLogger
2 instanceVariableNames: ’’

classVariableNames: ’’
4 poolDictionaries: ’’

category: ’PhaROS-Experiments-RoboShopDeliverable1’
6

PhaROSTurtleLogger>>start
8 super start.

self receiverDelegate: [:message :channel |
10 Transcript show: message value asString].

self
12 interestedIn: ’/turtle1/command_velocity’

typedAs: ’turtlesim/Velocity’

Listing 3.3: A Topic Subscriber Node Definition

The class PhaROSTurtleLogger includes a single method. It defines a block that is per-
formed each time a ROS message is received (lines 9-10). The block takes two argu-
ments. The first is the ROS message (instance of class PhaROSPacket), while the second
is the input channel (instance of class PhaROSInPutChannel) through which the ROS mes-
sage was received. In this example, we use only the ROS message that we display on
Transcript.

To make the node actually receive messages and thus perform logs, we need to reg-
ister it to some topic. This is done in the last part of the method (lines 11-13) subscribes
the node to the ’/turtle1/command_velocity’ topic.

5Communications include registering and handshakes, as well as connection/disconnections

14

Now we are ready to test our node. We will still be using the turtlesim_node to display
what is going on. In addition, we need to run a node that publishes on the same topic.
We use the draw_square node from the turtlesim ROS package as following:

viki@ROS$ rosrun turtlesim draw_square

On the PHAROS side, we need to launch a node instance of our PhaROSTurtleLogger.
This is provided in listing 3.4. We don’t explain it, since it is nearly identical to the code
for the launching the turtle driver (see listing 3.2 page 13).

1 master := PhaROSMaster url: ’http://127.0.0.1:11311/’.
2 node := master

create: PhaROSTurtleLogger
4 named: ’/myTurtleLogger’

domain: ’127.0.0.1’
6 tcpPort: 30303

xmlRpcPort: 31313

Listing 3.4: Running a Topic Subcriber Node

As a result, you’ll start seeing velocity set by the publisher displayed on the Transcript.
Once you are done, you stop the node by sending it the stop message in a workspace.

3.4 PHAROS Prototyping and Debugging Facilities

3.4.1 Calling a service
ROS allows nodes to call services provided by others through XML RPC. Services are
there to make a remote node execute something, or to ask for something punctual. They
are opposite to topics, that are instead useful to share data flows.

To call a service from PHAROS we need to write something like the following
snippet:

1 master := PhaROSMaster url: ’http://127.0.0.1:11311/’.
2 service := master lookupService: ’/clear’ with: ’/myID’ .

service md5sum: ’d41d8cd98f00b204e9800998ecf8427e’.
4 service call.

Listing 3.5: Writting a service call

In this example, we first ask the ROS master to lookup for a service. The first
parameter is the name under which the service was registered. The second parameter is
the identifier of the caller node. In our example, we lookup the ’/clear’ service registered
by the turtle simulator node. This service clears the paths made the turtle motion on the
simulator.

15

Looking up a service is not enought. We needto set up its md5sum before calling it.

Note: An easy way to getting the md5sum of a service is to call with a nil md5sum.
The result is an error which message provides all information about the service including
the md5sum!

Once we have a reference to a service, we can call it as many time as we need. In
the case of our example, we don’t need the result. But, in case you need the result, you
can get it by evaluating: service response.

3.4.2 Writing a Publisher Node with PhaROSBlockNode

PHAROS provides the PhaROSBlockNode that allows to write nodes quickly, mainly for
test and debug purpose. Listing 3.6 shows a snippet of code using this class. It first
creates a master object connected to the ROS master (line 2). Then, we create a new
node (from line 3 to 7). This node has a name, an ip address to reach the node (the ip
address of the machine where PHAROS is installed), two ports one for tcp connection
and one for xmlrpc incoming connections.

Using this node from the PHAROS side, we can now send messages to some topic.
In this example, we send a command on the /turtle1/command_velocity topic to make the turtle
moving.

1 | master node |
2 master := PhaROSMaster url: ’http://127.0.0.1:11311/’.

node := master create: PhaROSBlockNode
4 named: ’/myNode’

domain: ’127.0.0.1’
6 tcpPort: 9999

xmlRpcPort: 6123.
8

"Assuming the turtlesim is already running. Command: rosrun turtlesim turtlesim_node"
10 "Here an example of sending a command to the turtle"

node sendTo: ’/turtle1/command_velocity’ a: [
12 :msg | "The msg object has accessing methods for all the fields in the type."

msg angular: 1.0.
14 msg linear: −2.0]

Listing 3.6: Example of minimum code to write a publisher node

Listing 3.6 shows a simple example. A more complete example is provided in List-
ing 3.7. It shows how to write a node with a block that contains its logic code (from line
8 to 13).

1 | master node |
2 master := PhaROSMaster url: ’http://127.0.0.1:11311/’.

node := master create: PhaROSBlockNode

16

4 named: ’/myNode’
domain: ’127.0.0.1’

6 tcpPort: 9999
xmlRpcPort: 6123

8 soul: [
:myNode | "an object reprensenting /myNode"

10 myNode sendTo: ’/turtle1/command_velocity’ a: [:msg |
msg angular: 1.0.

12 msg linear: −2.0.
]].

14 node execute. "this message send make the soul block executing one time by the current thread"

Listing 3.7: A simple reusable publisher node

Line 14 in Listing 3.7 only executes once the soul block of the node. If one need
a long lived node, he must create a new process and a loop as show in Listing 3.8. In
this listing, the node will send a command to the turtle each seconds in an infinite loop.
Then, the node is started in its own thread (line 17).

1 | master node |
2 master := PhaROSMaster url: ’http://127.0.0.1:11311/’.

node := master create: PhaROSBlockNode
4 named: ’/myNode’

domain: ’127.0.0.1’
6 tcpPort: 9999

xmlRpcPort: 6123
8 soul: [:myNode |

[(Delay forSeconds: 1) wait.
10 myNode sendTo: ’/turtle1/command_velocity’ a: [:msg |

msg angular: 1.0.
12 msg linear: −2.0

].
14 true

] whileTrue
16].

[node execute] fork

Listing 3.8: A background publisher node

3.4.3 Writing a Subscriber Node with PhaROSBlockNode

Listing 3.9 shows the code to create a node and add it a delegate block (line 8) that will
be executed each time a message is received by this node. Then, on line 13, this new
node subscribes to the topic named /turtle1/command_velocity. Now, each message sent on
this topic will be received by /myNode and its delegate block will display this message on
the transcript.

17

1 | master node |
2 master := PhaROSMaster url: ’http://127.0.0.1:11311/’ .

node := master create: PhaROSNode
4 named: ’/myNode’

domain: ’127.0.0.1’
6 xmlRpcPort: 6123

delegate: [:msg :chn |
8 "this block will be executed each time a message arrives on one the topics this node is subscribed to"

Transcript show: msg value asString.
10].

12 "node subscribes to a topic"
node interestedIn: ’/turtle1/command_velocity’ typedAs: ’turtlesim/Velocity’.

Listing 3.9: A node that subscribes to a topic and processes the messages it receives

3.4.4 Writing a Node that is both a Publisher and a Subscriber
Listing 3.10 shows the code to create a node that publish and subscrite information. It
is the fusion of the two listings 3.7 and 3.9.

1 | master node |
master := PhaROSMaster url: ’http://127.0.0.1:11311/’ .

3 node := master create: PhaROSNode
named: ’/myNode’

5 domain: ’127.0.0.1’
tcpPort: 9999

7 xmlRpcPort: 6123
delegate: [:msg :chn |

9 Transcript show: msg value asString.
];

11 soul: [:me |
me sendTo: ’/turtle1/command_velocity’ a:[:msg |

13 msg angular: 1.0 ;
linear: −2.0

15]
].

17 node interestedIn: ’/turtle1/command_velocity’ typedAs: ’turtlesim/Velocity’.

Listing 3.10: A Node that is both a Subscriber and a Publisher

18

3.5 Running PHAROS Tests

3.5.1 ROS Environment Variables Set Up
ROS need to be configured for running PHAROS tests. First, stop all your ROS nodes,
including the rosmaster. Then, edit the .bashrc file of your linux. Comment or remove the
line that exports the ROS_NAME variable. Last, add a line that sets the the ROS_IP variable
to 127.0.0.1 as following:

export ROS_IP=127.0.0.1

Once the virtual machine is started, you verify in a shell that the ROS_IP environ-
ment variable is correctly set. Before launching PHAROS and running its tests.

viki@ROS$ echo $ROS_IP
127.0.0.1

3.5.2 Testing ROS
In case you are in trouble, you can test that ROS is set correclty. Launch ROS using the
roscore command. The following code shows what you should get:

viki@ROS$ roscore
... logging to /home/viki/.ros/log/8ebc0b60−a911−11e2−9979−0800275ddc22/roslaunch−ROS−3480.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl−C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://127.0.0.1:51607/
ros_comm version 1.8.10

SUMMARY
========

PARAMETERS

* /rosdistro

* /rosversion

NODES

auto−starting new master
Exception AttributeError: AttributeError("’_DummyThread’ object has no attribute ’_Thread__block’",) in <

module ’threading’ from ’/usr/lib/python2.7/threading.pyc’> ignored
process[master]: started with pid [3496]
ROS_MASTER_URI=http://127.0.0.1:11311/

19

setting /run_id to 8ebc0b60−a911−11e2−9979−0800275ddc22
Exception AttributeError: AttributeError("’_DummyThread’ object has no attribute ’_Thread__block’",) in <

module ’threading’ from ’/usr/lib/python2.7/threading.pyc’> ignored
process[rosout−1]: started with pid [3509]
started core service [/rosout]

You can now easily test that ROS is properly working by sending it an HTTP XML
request using cURL in another shell such as:

viki@ROS$ curl −X POST −d "<?xml version=’1.0’?> <methodCall> <methodName>getSystemState
</methodName> <params> <param> <value><string>/testId</string></value> </param> </params
> </methodCall>" http://127.0.0.1:11311 −−header "Content−Type:text/xml"

<?xml version=’1.0’?>
<methodResponse>
<params>
<param>
<value><array><data>
<value><int>1</int></value>
<value><string>current system state</string></value>
<value><array><data>
<value><array><data>
<value><array><data>
<value><string>/rosout_agg</string></value>
<value><array><data>
<value><string>/rosout</string></value>
</data></array></value>
</data></array></value>
</data></array></value>
<value><array><data>
<value><array><data>
<value><string>/rosout</string></value>
<value><array><data>
<value><string>/rosout</string></value>
</data></array></value>
</data></array></value>
</data></array></value>
<value><array><data>
<value><array><data>
<value><string>/rosout/set_logger_level</string></value>
<value><array><data>
<value><string>/rosout</string></value>
</data></array></value>
</data></array></value>
<value><array><data>
<value><string>/rosout/get_loggers</string></value>
<value><array><data>
<value><string>/rosout</string></value>
</data></array></value>
</data></array></value>

20

</data></array></value>
</data></array></value>
</data></array></value>
</param>
</params>
</methodResponse>

21

Bibliography

[NDP10] Oscar Nierstrasz, Stephane Ducasse, and Damien Pollet. Pharo by Example.
Square Bracket Associates, July 2010.

[Par08] Lynne E. Parker. Handbook of Robotics, chapter 40. Multiple Mobile Robot
Systems, pages 921–941. Springer, 2008.

22

	Introduction: Robots in Shopping Malls
	Mobile Autonomous Robots
	Robots for Retail
	This Report

	ROS
	ROS node
	ROS master
	ROS Messages
	Topics and Asynchronous Communications
	Services and Synchronous Communications

	PhaROS
	PhaROS Setup
	Building PhaROS
	Installing PhaROS on a ROS-ready Computer
	Launching PhaROS

	General Architecture
	PhaROS in action
	Preparing ROS
	Topic Publisher Node
	Topic Subscriber Node

	PhaROS Prototyping and Debugging Facilities
	Calling a service
	Writing a Publisher Node with [backgroundcolor=white]PhaROSBlockNode
	Writing a Subscriber Node with [backgroundcolor=white]PhaROSBlockNode
	Writing a Node that is both a Publisher and a Subscriber

	Running PhaROS Tests
	ROS Environment Variables Set Up
	Testing ROS

